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These values of 6i^ n correspond to the natural frequarcies of the 

long parlod oacillation of the ring shaped shallow body of water. 

Aa a final example of two-dimensior.^1 «eiches wa analyse the 

long parlod simple harmonic oscillation in a shallow circular basin 

having a dapth variation dependant only upon r ao (29.7) transforms 

into polar coordinates as 

fcr +l^r • I2 +M + g£ *r + <£ *  - 0 (29.201 

Laab [1932] page 291, has «hown that the solution for a parabolic 

dapth variation h(r) - h0 (1 - li ) it givan by 
a* 

f <r,9.t) - VS>B {cos} (ai) [coe] *wr(* »* * Jl >        (29-21) 

where 7 represents the hypergeometric series 

' -i1 * t£ •2 +*i^ftfH) <f>4 + i 
withal s2 - n (n-2)-a2 

*o 

©<« 1/2 (a + n),/? - 1/2 (2 '+ a - n),f- (it + 1) 

For tha tyametrlcal aodes (a - 0) this solution reduce» to 

* (r,t) • ^(aa cosWnt + BH sinWnt) F(M, 1-K, 1, £j ) 

p  . I i- iapflrf+M£ M(W-U(M-2)  /A- •   •   •   •] (29.22) 

^£_ a2 - 4K(H-1)  - 8,   24,  48,  80  .   .   . 

It is interesting to coapare thest long parlod oscillations 

(^>>h), «herein tha Hold particle aotlon is approximately 

independent of tha depth y, with the short parlod oscillations 

(Al< h) which have a direct dependence on y. For axaapla 

(23.14) would reduce to (29.16) as (y • h)-»0 since coahy—*1 

and caahy -_*.y M 7+o.    Also 

c -^ tanK. Ci£fe) - V5 ll^/^lik)2 4 .... ] -YihU • O^) 
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Similarly (23.15) would reduce to (29.17) and (23.16) would be 

equivalent to the additional results given by (29.18) and (29.19). 

This exact agreement of the linearised results in the limiting 

case is encouraging justification for both the shallow-water 

approximation and the infinitesimal-wave approximation since they 

originate not only from different physical considerations» but 

also by entirely different mathematical iterations as discussed 

in section 10. The shallow-water approximation leads to hyperbolic 

type nonlinear equations, while the infinitesimal-wave approxima- 

tion deals with linear elliptic equations. Stoker [1947] page 32 

giveb a detailed comparison of the two linearised approximations for 

the case of oma-dimenslonal flow over a flat bottom at a 6° slope. 

29- Of Linearised Shallow-water Theory Applied to Two-Dimensional 

Steady Plow. 

The first method of linearizing the shallow-water theory, 

am given by (29.3), would be applicable to the determination of 

ths variation in water depth for the steady flow in a shallow 

open channel or river. However, in practically all cases, (29.3) 

must be solved numerically so it does not entail a prohibitive 

inimt of extra labor to solve the more exact original nonlinear 

firr,t-order equation (2A.1) directly using the methods discussed in 

the next section (30) on nonlinear first-order theory. As a 

matter of fact» for supercritical flow defined by U > fgh, the 

mmthod of characteristics is vary easy to use in the nuKrlcal 

solution of the flat bottom nearly horisontal open channel having 

a varying width, aa shown in section 30. The subcritlcal case» 

having a flow velocity everywhere <"J/gh, can be satisfactorily 
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envelope so this region must be replaced by a hydraulic jump having 

a finite discontinuity and non-isentropic flow« 

If the local flow velocity and water depth are required only 

on the curved boundary itself» then neither family of characteristics 

beve to be determined (except as a precaution to verify that no 

finite discontinuities have formed near the boundary due to flow 

compression). The solution on the curved boundary itself is given 

directly from Table I by simply measuring f(F*) as the value 

corresponding to (see Figure 44) 

f[**<•)] - f[F^] + 9 (30.46) 

If this expression becomes zero it signifies that the supercritical 

flow has been compressed to critical speed and a detached hydraulic 

jiaap can occur as In Figure 44. 

Whenever disturbance waves enter &xcng both families, either 

due to another boundary or by reflection fron a hydraulic jump» as 

in Figure 42, then the mixed region contains non-simple waves» and 

only a numerical solution» similar to the ones discussed in conjunc- 

tion with (30.43), can yield the exact solution. However» an 

approximate solution for the particular cases shown in Figure 42 can 

be obtained by approximating the curved characteristics in the non- 

simple region by means of simple wave, straight characteristic lines. 

The geometrical construction assumes that the curved boundary wall 

of the nozzle can be replaced by a series of straight chord lines 

that each have the same magnitude of A 9  at every corner as 

depicted in Figure 45. At each expansion corner it Is assumed that 

the centered simple wave (corresponding to a portion of the complete 

Prandtl-Meyer expansion» f) can be approximated by a slpgle physical 

characteristic that is the average of the actual expansion f*n of 





























bottom. Bakhmeteff [1932] experimentally shows the various effects 

of steepening bottom slopes« He also generalizes (30.51) so it 

will apply to any constant cross-section shape. However, it must 

be noted that our equation (29.3) shows conclusively that (30.51) 

which completely neglects the w velocity component, cannot be 

applicable to channel walls that are not nearly vertical. Sloping 

sides on a channel would increase the vertical velocity gradients, 

make a normal hydraulic junp impossible, and induce unsteady vortex 

motions. 

It must also be noted that all of the preceding results are 

valid only for relatively small bottom slopes, as indicated by the 

direct comparison of (30.50) and (30.51) with (28.1) and (29.3). 

When the flow is rapidly varying because of large changes in the 

bottom slope, then the change in surface profile curvature is so 

pronounced that the pressure variation can no longer be considered 

as hydrostatic. For example, over the spillway of a dam the centri- 

fugal force due to the streamline curvature can actually exceed the 

hydrostatic pressure, thereby leading to a pressure less than 

atmospheric with flow separation or violent oscillations. At present 

spillway design Is based on semi-empirical methods or model tests 

since no satisfactory mathematical analysis is available. 
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These are called the cnoidal waves, as discovered by Korteweg and 

de Vrtes [1895], and Che solitary waves of Russell [1837, 1844], 

Boussinesq [1871, 1872], and Rayleigh [1876].  In order to obtain the 

higher order approximations and limiting heights of these waves it is 

more convenient to use exactly the same non-dimensional variables as 

introduced by Friedrichs [1948], and also used by Keller [1948], 

namely, 

i -w2h2, O^-WJ x, ß> - y/h, H- h^/h 

h) U(A, £) - u(x,y)/fgTT,  <i/(or,fl>) - 
1^Y)  (co 

y<<*)- 7 (x)/h,  77<<x,^) - P(x,y)/fgh 

K<or)-y(o)+£y<
l> + £»y<» + . . . . 

ij/(x)   -hy<°> +cu2h3y(D +  c^4h5/(2) + 

(31.5) 

j 

the only difference in notation being that x and y  are now defined 

as In Figure 37", consequently the flat horizontal bottom is given by 

y • -h^ ox a»  -h^ /h • -H, and the expansion parameter £ • u/h* 

is used as defined in (10.23), with (31.5) replacing (10.21). 

Introducing the transformation defined by (31.5) into (31.4) 

and the corresponding equivalent of (10.33) we obtain 

V(o) -o -v'x) 

(o) 
u (o) (a, /b) - u0 - constant, y

(°'(or) - Y0 " constant - ^0/h 

vil) • 1(l)-o. v^cy»)-^«» . 

V**» - o.   v
il\ y0) - - y<» i/»> - y<lV«; 

(31.6) 
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which provides the exact first approximation to the solitary wave. 

All of these solutions, for the cnoidal wave and the solitary 

vcve, are in exact: agreement with the expressions first given by 

Korteweg and de Vrles [1859], pages 430-431, if one neglects the 

terms of 0(a/hoo) .  It will now be proved that the terms of 

CKa/h^ ) must be neglected in these first approximations becuase 

the second approximations introduce additional terms having this 

order of magnitude. 

We can continue to the next order of approximation by collecting 

3 4 
the remaining terms corresponding to £ , and adding some of the £ 

terms that are necessary in order to complete the solution 

irwtYj - y(3> - y<l) i• <yc> 

$>-*«>.    03)--^W (31.21) 

. u»> + u(1> u(2> + u(2)u(1>+ 7T<3> •  V<2> u<2>  - 0 O   <V ot <\ ex ß 

u   V<3>  + vS»l£2) + /TO) + V(2)  y (2)  . 0 

^(4,<y0> • Ky<3> + u<»y<2> +u<2> y(D./(2)><2) .^)yd) 

!/(/,)( - H) - 0 

Now we can combine the expression for V"' in (31.10) with 

that In (31.21) to write 

- $ (/b2  • 2H^)R0,0r +S(c<)j (31.22) 

Then the expression for v'**'  in (31.21) yields 
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at: least provide asymptotic descriptions of the exact solution for 

the solitary wave problem. The convergence of the expansion 

Indicated by (31.37) for the solitary wave seem reasonable in viev? 

of their excellent agreement with experimental data. The corresponding 

existence proof for cnoldal waves (in the neighborhood of the 

critical speed defined by a Froude number of unity) was given by 

Littraan [1957]« Again this justified the Friedrichs expansion 

method, at least as an asymptotic type of series development. An 

additional discussion of these existence proofs is given in section 35. 

31 ß  - The Limiting Height and Velocity of Propagation of Cnoldal 

and Solitary Waves. 

It is interesting to note that the pressure is still hydro- 

static for y - 0, but is no longer hydrostatic as the bottom 

(y " "hoo) is appraoched with the second approximation.  Similarly 

the variation of the horizontal velocity component with depth below 

the surface becomes important in the second approximation only upon 

approaching the flat horizontal bottom. However, the vertical 

velocity component is now seen to be the principal variation that 

violates the basic assumptions jf first order shallow water theory. 

The first approximation given in (31.19) gives a monotonlc variation 

in tr(y) that is obviously necessary from physical consideration in 

order to satisfy the continuity equation.  However, this monotonlc 

3/2 
variation in V(y) is of the higher order of (t/h^)   so it can 

be neglected in the first order equations (28.2) as long as the 

resulting local variations in Y]   are sufficiently small. 
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The second approximation to the vortical velocity component, 

given in (31.36), now shows that the variation of V(y) will no 

longer be monotonlc as (a/h^) increases. This leads one to suspect 

that thera is a limiting value to (a/h<*) for cnoidal and solitary 

waves. For example, (31.36) shows that in the neighborhood of 

the wave crest where x -*> U so that 

cn2<AUx) - II - <A*x>2] - U - £, ^jL_j ^ (^ J 

then ^(y) actually has a reversal in its direction if (a/h^) 

exceeds the value given by 

oo / JJ^   y 9k4 + 2 

for any value of y • 0. 

This limiting value can be substantiated, at least in the limit 

as k —>  1, by noting that (31.33) has a real solution for "7^ 

only if 

ac2 - i) (^\c(X\ * 5 (2k2 - i)2  
k2      /lhoc/   Vhoe /        7  . 37k2(1 _ k2} 

leading to a limiting value of 

MAX       v        7  - 37k*(l-kz) 

The most interesting application of these results are to the 

solitary wave defined by k - 1, in which case we find from (31.38), 

(31.39) and (31.40) that the limiting heights and the corresponding 

total velocity at infinity are given by 
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Ofr)*« •3nr" °"72"> *"0-n43 

ru(«=*) 20—*- - 1.284 >   1.281 (31.41) 
MAX 

Either of these limiting heights would be satisfactory for a solitary 

wave since recent experimental Investigations by Ippen and Kulln 

[1955], Dally and Stephan [1952], and Ferroud [1957] have shown 

that under properly controlled conditions most solitary waves have 

(a/h^) < 0.7, the maximum recorded value being 0.72. Not only are 

the limiting values given by (31.39) or (31.40) In excellent agree- 

ment with recent experimental data, but they are consistent with the 

order of approximation involved. The (8/11) value Is derived from 

5/2 
the vertical velocity variation given to the order of (a/h^) 

by (31.36), while the (5/7) value corresponds to the terms governed 

by £2 or (a/ti^)2 In (31.32). 

Many attempts have been made to determine the limiting height of 

a solitary wave. However, nearly all of the theoretical calculations 

iiave been based on Stokes [1880 page 227J relation which assumes 

that for the limiting heights of any wave the wave crest must form 
o 

a sharp peak or double point having ai enclosed angle of 120 In 

order to reduce the relative local velocity to zero at the crest 

itself, e.g., see section 33 or Lamb [1932], page 418. This 120° 

enclosed angle at the wave crest was assumed by HcCowan [1894], 

Stokes [1905], Gwyther [1900], Davles [1952], Packham [1952], Goody 

and Davles [1957] and Yamada [1957]. Several of these values are 

compared with experimental data, and the theoretical values given 

by (31.38) and (31.41), In Figure 48. It la seen that none of these 
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COMPLETE CENTERED    -\ ^\\ 
S/MPLE EXPANSION WAVE. O °^ ^ 

-77 

S/MPL£(C+) 
EXPAAJS/O/J   IAXAI/ES 

S IMPL.E (C+)  COMPRESSION HAVEJ 

FOAM < KG A DASCONTINUOUS ( H. J.) 
J/UC/ZEASE   IAJ   l*/AT£/t   DEPTH. 
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f (30.26) 

DETACHED 

I HYDRAULIC JUMP 

FIG 44 -  SIMPLE  IVAI/ES AMD   THE PCGMAT/O/U 

or HYü&AULtc JUMPS 












